Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

Уравнения Максвелла

Уравне́ния Ма́ксвелла — система уравнений в дифференциальной или интегральной форме, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах

Закон Гаусса:

Электрическое поле из-за точечного заряда q, расположенного в начале координат в точке, заданной вектором r, равно

E (r) = q / 4π∈º r / r³

И за счет поверхностного интегрирования замкнутой поверхности, окружающей заряд, мы получаем

∮ˢ En.dα = q / 4π∈º∫ r / r³ n.dα

→ ∮ˢ En.dα = q / 4π∈º (4π) = q / ∈º

Поскольку угол, обращенный к области dα, лежащей на сферической поверхности S.

∫ r / r³ n.  dα = 4π

Если запечатанная поверхность имеет несколько зарядов, она

∮ˢ En.dα = 1 / ∈º ∑ⁿᵢ = ₁ qi = 1 / ∈º ∫ᵥ pdv → (1)

И, используя теорию интервалов

∮ˢ En.dα = ∫ᵥ div F dv 

Отсюда закон Гаусса можно выразить формулой

∮ˢ En.dα = ∫ᵥ div E dv → (2) 

Приравнивая уравнения (1) и (2), находим

∫ᵥ div E dv = 1 / ∈º ∫ᵥ pdv

divE = 1 / ∈º ρ 

Но D = εºE и отсюда находим divD = ∈º divE

→ divD = ρ → (1 *)

Это одно из дифференциальных уравнений Максвелла.

Магнитный поток:

Фарадей экспериментально обнаружил, что электромагнитная индукция

(Электродвижущая сила, создаваемая магнитом)

Это дано отношениями

∃ = — dΦ / dt & ∃ = ∮ E. dl

B = dΦ / dA → Φ = ∫ B .ndα → ∃ = — dΦ / dt

= — d / dt ∫ B .ndα

→ ∮ E. Dl = — d / dt ∫ B .ndα

Из теоремы Стокса: F. Dl = ∫ cur LF .ndα∮

→ ∮ E .dl = ∫ cur LE .ndα

→ ∫ cur LE .ndα = — ∫ ∂B / ∂t.  ndα

→ cur LE = — ∂B / ∂t → (2 *)

Он представляет собой второе дифференциальное уравнение Максвелла.

Плотность магнитного потока:

После того, как Орстед обнаружил, что токи генерируют электрические и магнитные поля, он поместил ампер, результаты многих лабораторных экспериментов, которые Бают и Саффарт использовали при установлении зависимости плотности магнитного потока. И обратно пропорционально квадрату расстояния между точками. и компонент длины

B ∝μ₀IdL sinθ / 4πr² → B = kₘμ₀IdL sinθ / 4πr²

B = μ₀ / 4π ∮ IdLxr / r³

А для двух электрических цепей, которые генерируют два магнитных поля, предыдущая связь становится суммой

Плотность потока для каждого элемента длиной dL

B (r) = μ₀ / 4π∮ IdL x (r₂ — r₁ / | r₂ — r₁ | ³

А непрерывное распределение тока на единицу длины — это плотность

Дж (г) на единицу объема

B (r) = μ₀ / 4π∫ᵥ J (r₁) x (r₂ — r₁) / | r₂ — r₁ | ³dv

→ divB (r) = μ₀ / 4π ∫ᵥdiv (J (r₁) x

(r₂ — r₁) / | r₂ — r₁ | ³dv

И из векторных совпадений

div (A × B) = — A. cur LB + B. cur LA

B (r) = μ₀I / 4π∫ᵥ — (J (r) curL (r₂ — r₁) / | r₂ — r₁ | ³ +

(r₂ — r₁) / | r₂ — r₁ | ³.  curLJ (r)] dv

Но всегда curIL = 0

→ divB (r) = μ₀I / 4π∫ᵥ — J (r₁) curL

(r — r₁) / | r₂ — r₁ | ³ dv

Но количество

(r — r₁) / | r₂ — r₁ | ³

Это наклон величины (r₂ — r₁) / — 1, и поскольку кривизна любого наклона равна нулю, мы находим

divB = 0 → (3 *)

Он представляет собой третье дифференциальное уравнение Максвелла и подразумевает, что не может быть единственного магнитного полюса.

Также при изучении магнетизма мы обнаружили, что интенсивность магнитного потока определяется соотношением

B = θ / A → dθ / dA = B → θ = ∮ˢ Bn.  dα

Из теории дивергенции находим θ = ∫ᵥ divBdv = 0 →

Если магнитный поток через замкнутую поверхность равен нулю, то доказано, что магнитный поток через контур не зависит от используемой поверхности.

Закон Ампера и ток смещения:

Из уравнения для плотности магнитного поля

B (r) = μ₀ / 4π ∫ᵥ J (r₁) ⨯ (r₂ — r₁) / | r₂ — r₁ | ³ dv

Взяв свертку приведенного выше уравнения и включив в нее дифференциал по вектору r, и вот почему этот научный эффект ограничен фактором

(r — r₁) / | r₂ — r₁ | ³

Понятно, что взятие дифференциала по r может быть заменено по отношению к вектору r при условии, что стоит отрицательный знак, и если это изменение сделано при взятии производной, мы можем использовать метод интегрирования делением для перенести производную на фактор

J (r) находится в одной границе, где он появляется как (r) divJ

Таким образом, интегральное значение первого члена обращается в нуль, а интеграл второго члена распадается на следующие

cur LB = μ₀J (r) → (*)

Это уравнение представляет собой дифференциальную формулу закона Ампера и учитывает все типы токов, которые могут быть магнитным полем. Это уравнение можно записать в формуле

cur LB = μ₀ (J + Jm)

Но Jm = cur LM

Где M представляет собой коэффициент намагничивания

→ cur LB = μ₀J + μ₀ cur LM

curL (1 / μ₀ B — M) = J 

Но напряженность магнитного поля H

(1 / μ₀ B — M) = H → cur LH = J 

Возвращаясь к уравнению (*) → cur LB = μ₀J (r)

И используя теорию Стокса

∫s cur LB.  ndα = ∮c B.  дл 

И заменяя cur LB, получаем

∮c Б.  dL = μ₀ ∫s J.  ndα

B / μ₀ = H → ∮c H.  dL = s J.  ndα

Где J представляет собой плотность тока, ndα — количество заряженных частиц на единицу поверхности, а H — напряженность поля.

Магнитный и применяя закон Ампера к цепи к замкнутой кривой и поверхности S

∮c Х.  dL = s J.  ndα = L 

Две поверхности S₁ представляют собой замкнутую поверхность

(Они встречаются на кривой c). Уравнение можно записать в следующем виде

∫s₂ J.  n₂dα + ∫s₁ J.  n₁ dα ≠ 0

∮s₁ + s₂ J.  ndα ≠ 0 

И путем замены divJ =, где J исчезает.  Но

divJ = ∂ / ∂x J I + ∂ / ∂y JJ + / ∂z k = 0

И от пробелов

∮s₁ + s₂ J.  ndα = ∫ᵥ divJ dv

Предположим, что (*) → J + α = и вектор α делает div

Равно нулю

divJ = divJ + divα

А из закона непрерывности (сохранения заряда) можно подставить

divJ = — ∂ρ / ∂t

Таким образом, divJ = — ∂ρ / ∂t + divα

Однако плотность заряда связана с электрическим смещением механической зависимостью

divD = ρ → divJ = — ∂ρ / ∂t + divα = 0

→ — ∂ρ / ∂t = — divα → α = ∂D / ∂t

Возвращаясь к уравнению (*) → cur LB = μ₀J (r)

Будьте по формуле

J = J + ∂D / ∂t

Но J = curLH

→ J = cur LH = J + ∂D / ∂t → (*)

И ограничить

∂D / ∂t

Он называется током смещения и является одним из основных дополнений Максвелла к электромагнетизму, и это одно из уравнений Максвелла, которые представляют собой обобщение экспериментальных наблюдений и применимы к большинству случаев.

Смещение J + переход J = J → общее curLH = J

J = dI / dr = dVσ / dr = σ 

dV / dr =σE

Муханнад Касим Мухаммад Аль-Хунаиди

БАКАЛАВР ФИЗИКИ <a rel=»noreferrer noopener» href=»https://uosamarra.edu.iq» target=»_blank»><strong>UNIVERSITY</strong> OF <strong>SAMARRA</strong></a>В ПРОВИНЦИИ САЛАХ АЛЬ-ДИН, ОКРУГ САМАРРА, ИРАК


Больше на Granite of science

Подпишитесь, чтобы получать последние записи по электронной почте.

Добавить комментарий